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~~~~ Multi-loop linea r—quadratic state-feedback devised for the synthesis of feedback systems
(U~SF) regulators are shown to be robust against a with specified poles (4 , pp. 77—87 ) ,  (5 1, (63 .

~~~~ variety of la rge dynamical , time-varying, and non- Thus, the LQG technique is a valuable design aid
lincar variations in open-loop dynamics. The for satisfying the first three of the afor.men-
recults arc inter~roted in terms of the classic*l tioned design constraints.
concept, of gain and phase margin, thus strength- The results which follow show how the melti—
eninq the link between claisical and modern feed— varjsbl. LQG design can satisfy constraints of
back theory. th. fourth type, i . e .  constraints requiring a

syste m to be robust against variations in open
loop dynamics. The Linear-Quadratic-Stat.-

I. Introd uction Feedback regulator , which we refer to as the
LQSI regulator, is considered. The robustness of

Histo r ical ly,  feedback has been used in con- LQSE regulator designs against variations in open—
trol system engineering as a means for satisfying iocp dynamics is measured in terms of multiloop
design constraints requiting qensralizatiøns of the classical notions of g~~~

1) stabiliration of insufficiently stable and phase mergi~ . It i. shown that LQSF multi—
variable designs have the property of an infini’tesystems, gain margin and +60 phase margin for each con—

2) reduction of system response to noise, trol channel.
Such robustness results may appear incorrect3) realization of a specific input/output at first glance, especially to control engineersrelation (e.g., specified poles and familiar with classical servomechanism design.zeroes) , or

It should be noted that in classical servomech-
4) imp rovement of a system s robustnes.~ anism design the dimension of the co~~enIators

aqain~t variations In its open—loop osed (e.g., lead-lag networks) generally leads to
dynamics. large phase lags at high frequencies, so that one

may never have the infinite gain margin property.
Classical feedback synthesis techniques include However , it Should be stress ed that when one uses
procedures which ensure d ir ec t ly  that each of full state—variable feedback one , in e f fec t ,  in—
these design constraints  is satisfied Ill and (2). troduces a multitude of zeroes ~n the compensator,Unfo r tunate ly ,  the direct method.q of classical it is this abundance of zeros, together with the
feedback theory become overwhelmingly complicated Linear—Quadratic optimal design procedure that
for all but th. simplest feedback configurations, results in the surprising robustness properties
In particular , the classical theory cannot cope of LQSF designs.
simply and effectively with multiloop feedback. In order to provide a more detailed and

Linear-Quadratic—Gaussian (LQG) control rçalistic bridge between the classical and modern
theory has made relatively simple the solution of approaches, especially with respect to robustness
many multiloop control synthesi, problems . The issues, one has to exami ne the case in which not
LQG technique (3) provides a straightforward means all stat e variables are available for  feedback.
for synthesizing stabl. linear feedback systoms In the modern control approach , one would then
which are ~nsenstt ive to Gaussian white noise, have to use a state reconstructor (Luenberge r

us have also been observe r or constant gain Kalsisn f i l t e r ) . TheVariations of the LQG techniq 
overall robustness properties of such designs are
not entirely settled as yet, they will be

• This research was conducted at the M.I .T .  Else— addressed in a future publication. Also there are
tronic Systems Laboratory with partial support interesting and as yet un resolved issues of the
extondud by IffiS I~/Ames Research Center u~dcr grant / robustness properties of output (or limited-state)
N~L-22-009-l24 and by AFOSR under grant 72-2273a/ variable feedback designs using quadratic per-

formance criteria (313.•‘koom 3S-308. Massachusetts Institute of I’cchno- Exploiting the mathe matical duality between
logy , C.mbridqu , Massachu setts 02139. Xalma n filters and Linear—Quadratic optimal fted-
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back controllers , th, authortt have shown thet the f..stur.s in comeon with th. r.sults which irs pr.—
rebu~tnne, result , of thin jsn~’..v- lead to condition. ..nt.d her..
for th. on- v.,rt~ence of thi’ n~t ~mete’u qvncrat.d
by nunlinear filter,, of t he type ~.tu.tJerrd by Gil— XI!. Definitions end Notation
men and khodss (333 , th.ut duel results wi l l  be
th. topic of a future ptttlicat lut,. in contrast The follcsvinq conventions of notation and tsr—
to the resultzi pr..snt.d hem , tin’ dual nonlinear minoloqy are uis.dz
filtering resutti require the availability ~~~ 

~~~ ,t
t
~ (*T ) d.not~s th. transpos, of theexact d.scriptt n of th. system under cOn*idera- matrix A (the vector x ) .tion and hence have no cost~ara1 lc robuvtn,ss inter- — —

pr.t.tton. It can be shown that substituting the (ii) A’ denotes the adjoint of the matrix
non-div.rqent state-estimate Crow this type of A (I.. ., the compl.x-conjugat. of AT).
filter for the true state in a nonlinear state— 

(iii) We say that the function x:(0, ) ~feedback r.q~ilator will not destabilize th. 
~. ~~uare-integrab1. ifcto.sd- ioop system.
a..

IL. Previous Work ) x~ ( t)  It) dt < ..
0~~~The fund*meutal work on the robustn.s, of

(iv) Th. term operator is reserved for func—f..dl,ack systems is dus to bad. ii. PP. 451 88) . tion, which ,
~~~ 

functions into func—Employing the Nyquist stability criterion, Bode tions. For exarple, a dynamical systemshowed how the notions of gain and phase margin 
way be viewed as an operator mappingcan be exploited to arrive at a sisple and useful input time-functions into output time-mean, for characterizing the clae.eu of variations 
functions.in open-loop dynamics which will not destabilize

single-input feedback systems. The .nqin..ri~q (v) we say that an operator N with N 0 — 0
implications of Bode’s rosults are further dovsl— has finite gain if there exists a
aped by Horowitz (21. Although the Nyquist cri- constant k < . such that
ten on has been extended to multiloop feedback
systems (7) and (81, there has as yet bean only f ((N )(t))T((N u)(t))dtlimited success in exploiting the wultiloop version
in the analysis of multiloop feedback ayst ms ro-
bustness (9 3- ( l4~ . < kf uT t uct dtRegarding the robustness properties specific
to LQSF regulators , perhaps the most significant
result. is due to Anderson and Moore (4, pp. 70 for all square-integnable u.
763. Exploiting the fact that single-input LQSF 

(vi) We say that an operator napping inputregulators have a return-difference greater than 
time-functions into output time—fwtc—unity at all frequencies (151. these author, show tione is non-anticipative if the valuethat single-input LQSF regulator designs have ±60 
ass l ed by the output function at anyphase margin , infinitc gain margin, and 50% gain time t depends only on the values ofreduction tolerance . It has also been shown that 
tie ~~~~~~~~~~~~ at time. t < tthe gain properties extend to memorytesa nonlinear — 0’

gains of the type shown in Figure 1 (16) and (4, (vii) If a function Ic:(0, •) • R’ has the
pp. 96-983).’ kclated re.ultu by Barnctt and property that
Store, (18) and Wong (191, (35) pataweterize ~ lie x(t) — 0Class of linear, constant perturbations in feed— c... —

back gain Which will not destabilize a multi-loop 
-

l.QSF regulator. A generalization of the latter then we say that x is asy~~otically
result  to nlultiloop nonlinearities in optimal ‘ton- stabla. A system of ordinary differen—
linear state-feedback regulators with a quadratic tial equations is aa~~~totica1ly stableperformance index is incorrectly attributed to (161 if every solution 1. asy,ptotically
by (203. Insofar as the generalization stated in stable.
(20) appiies to I.QSF regulators, it ia essentially • (viii) If CS) denotes the system c(t) (hi) Ct)
equivalent to theorem 1 of this paper. where F 0 — 0, we say that the pairVarious other results have been produced which (H, S3 ’i detectable if, for each
are more or less indir•ctly related to the qu.~s- x t (O , .3 • R’ satisfying CS) with K not
tion considered here. Issues related to the in— square-integrable, H x is also not

terization of the properties of optimal systems , detectability is most apparent if we
verse problem of optimal control. i.e. the charac- square—integrable. The significance of

are considered by 115), and (203—1241. The ques— consider x(t) as a description of thetion of i~enaitivity in LQSF regulators is con- internal dynastic, of some physical
sidered by (103, (15), and (2S)-(28). The stabil— system and (H x)(t) as the observedity conditions of 7amos (29) and (30 ) involving output. Viewed in this manner, detect— t
loop gain, conicity, and poeltivity hav, many ability means essentially that unstable
_______________________________________________ behavior in the system’s internal dy-

namics always results in en output• This result i. attributed by And.raon (16) to which is wstakl.. For example, if H
Saga (17). is a non—singular square matrix, then

~~2



(H , S) will be detectabl e. We asst~~ that N is a finite gain, non-anticipa-
(ix) We say that an operator mapping ties- tive operator wLth N 0 — 0 (see Figure 2). ’

functions into time-functions Is-~ 
- -
~ V. Resultses.ony t ess if the value assumed by itS

time 
~~~~
. these results is not restricted to syste ms with

output function at any instant t0 d.- The two theorems which foll~~ quantitativelyponds only ~on t0 and the Instantan- characterize the tolerance of (~~) to perturba-
sou, value of the input function at tions ~j. It is noted that the significanc, of

Cx ) A > 0 (A > 0) is used to indicate that perturbations originating only at the point shown
— — in Figure 2. Rather, it is only necessa ry thatth. matrix A is positive definite (semi—

definite), the system under consideration have open—loop
input/output behavior which is the same as the

(xi) We say that a rational transfer func— open—loop behavior of (a). Both of the theor.ms
tion P15) is p~oper if P(s) has at which follow have interpretations in terms ofleast as many poles as zeroes, generalizations of the classical notions of gain

and phase margin. Th. proofs are given in Appen-IV. Problem Formulation
dix A.

Th. Linear-Quadratic-State-Feedback (LQSF) Theorem 1-- (LQSF Multiloop Nonlinear Gain
regulator problem can be formulated as follows Tolerance)

un  J(x, ~) Let the perturbation N of (~~) be a esmoryless,time-varying non-linearity,

(N u)(t)— f(u(t), t). (5.1)subject to 1 - —

If there exists a constant B > 0 and a constant
*(t) — A x(t) + B u(t) x(0) — !o~ 

(4.1) k < ~ such that 
—

x(t) ( K’ , u(t) C Km 
xi 1’ T - l  !tâ uTR_lu (5.2)~~ C K , k a a >  u f(R u, t) >

n~m
~~ € R / for all u (K” and all t C (0, .3, then

where the performance index J(x, u) is given by J(x~,u
5) ‘ J (~~

‘(t)g ~ (t
—

J(x , u) — J (xT(t) Q x(t) 
+ B ~~~t) K ~(t) )dt (5.3)— —  0

_ 
——

‘P (4.2)• a It) !~~
(t))dt 

~
. and if , additionally, (Q

1~2, E) is detectable then
(~~) is asymptotically stable.o

- 0 K - K’P > Theorem 2--(I~ SF Molti jeep Gain and Phame
Margin)

Th. optimal control u’(t) and the associated opti—
Let th. perturbation N of (~~) be a finitesal state-trajectory x’(t) are given by 

gain , linear, time-invariant operator L with

I

rational transfer function matrix L(s) If for— l~~x (t) + B a ( t ) ~ x (0) —
all w

u’(t) — —H x (t) I _!1~.
T
!! ’~ t) !~(iu)!

’
~ 

4 R”1L’( j )  — II’~ > 0  (5.4)

where K — It’P > 0 sati5fies the Riccati equation and if ~~l/2 fJ is detectable, then (~~) isasymptotically stable • C)

0 - K A + *
Tx - ~ ~—i~r~ + (4.3) The results of Theorems 1 and 2 apply only in

•~tuations where the perturbation ~ is either
The m2niaal value of the perforstance index is aemoryless or linear-time-invariant. While this

covers many interesting situations , these are not
J(x , M~~ 

— ‘PK ~~~. 
- 

(4.4) the most general rusults possible. In Appendix B
it is shown that the stability conditions of

The class of sys te ms considered here are per— theorems 1 and 2 are actually special cases of a
turbed versions of (~~~~ ) satisfying more abstract result concerning the input/output

stability of a class of systems including (~~) as
‘ A x(t) + (ii td ~) (t)~ a special case.

(E) 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

• The condition ~j 0 — 0 is not restrictive since
~It) — —H (t)

we can always consider the DC or stea dy—state
eff .cta separately as is comson engineeringwhere A , B, ~~~, and H are the sasa as in (E). practi ce.

________ ___________ 3
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VI. l)i •~ u~~ ton when K — diaq(r1,...,r ) .
From corollary 4, the following two resultsTheersn~ 1 and 2 characterize a wid, class of follow dtr..cUy :var iations in open-loop dynamics which can be tol-

erated by L.SQ~ repalator dosiqns. To appreciato Corollary ‘:
~~ (t.QSF t60 Nulttloop Phase

the stgni ficar~e of these results and. in particu- Marqtn) : If ~nd R satisfy lb.).) and (6.2), then

~
ç jar , their re~~ tion to classical gain and phase a phase shift a~ with 

~ JJ <60 in the respective
margin , it is instructive to consider the special feedback loops of each of the controls uj will
case depicted in Figure 3 in which leave an LQSF regulator asymptotically stable. 0

2. > 2.. 16.1) Proof: fake P1(jw) — e~~i ~~~~ . Pros corollary

— 60.o

R — diaq (r1,...,r~) l  2 0 
,(6.2) Margin and 50% Gain Reduction Tolerance): If

Corollary 6: (Multiloop LQSF Infinite Gain

rr, ~ ... 0 4, we require cos •i
(w) >4o r I,i

(u)I~~
c05’

~~
(l/2)

and K satisfy (6.1) and (6.2), then the insertion

of linear constant gains a
~ 

> 4 into the feedback1.0 
loops of the respective controls u will leave an
LQSF regulator asymptotically stab’e. 0~and the perturbation N satisfies

Proof: Follows trivially from corollary 4.0

~ ~l 
U
1 1 Corollaries S and 6 are obvious aultiloqp

generalizations of the previously established
— 

N 

: (6.3) result (4, pp. 70—76) that single—input LQSP regu-
lators have infinite gain uargin ,±60 phase mar—

L-~ 
a J gin, and 50% gain reduction tolerance.

so that the perturbations in the various feedback VII. Conclusions
ioopn a, non-Interacting. Results have been generated which quantita—in this case theorem 1 specializes to the tively characterize a wide class of variations in
following: open—loop dynamics which will not destabilize

Corollary 3: If the perturbed system (~~) I.QSF regulators. A ±60 phase margin property of
satisfies (6.1), (6.2), and (6.3) and each of the LQSF regulators has been established for multiloop
p.r~ urbat:ons tji~ is memoryless with (Niuj) Ct) systems (corollary 5). The class of nondestabili—
I fj(u1 (t ) , t) and for some ii < 0, some B > 0 and zing linear feedback perturbations for sultiloop
all t ( (0, ~) LQSF regulators has been extended to include

dynamical, t anstar—function perturbationsfi Co,t) — 0 (6.4a) (theorem 2). A nonlinearity tolerance property
8+1 for LQSF regulators has been proved (theorem 1).k >~~~ 

(
1(u ,t) 

~~
.

—

~
-- for all u ~ 0 (6.4b) An upper bound on the performance index change

in a perturbed LQSF system has been established(see Figure 1), then (~~) is asymptotically stable (Eq. (5.3) in theorem 1 and corollary 3). Theand (~ .3) holds. 0 latter result can be interpreted as a measure of
Proof a This follows issnediately from the stability of a perturbed LQSF regulator in

theorem 1. ii comparison with the unperturbed regulator. The
process of generating these results has broughtIt we conside r the case In which the N~~s of pertinent previous results (4, pp. 70—76, 96—98),the system in Figure 3 are linear time—invariant (16), ( lS )—(2o )  together under a unified theoreti—operatnT~~, th~, theorem 2 becomes: cal framework.

Corollary 4: If the perturbed system (E) The results presented show that modern multi—
satis’i~~. (6.1), (6.2). and (6.3) and if each of loop LQSP regulators have excellent robustness
the perturbations ~ is linear and time—invariant properties as measured by the classical criteria
with proper rationa’ transfer function p (s), ot gain and phase margin , thus strengthening the
Rs(sj) 0 for each pole s

~ 
of Ps (s) , lana link between modern and classicai feedback theory.

Pe(P1(j0)J~~ 1/2 for all w, then (~~) is asyaptoti— Additionally , these results show that multiloop
cally stable .o LQSF regulator designs can tolerate a good deal

of nonlinearity. The quantitative nature of theProof: The condition Re(sjl < 0 assures th at results suggests that they say be useful in the
~ has finite gain. Taking L(s) — diag(P j ( s ) ) ,  the synthesis of robust controllers.result follows iresdiately from theorem 2.0 Although the results presented all specify

Frost corollary 3, it is clear that the sj f f i — that the tolerable perturbations be measured with
d ent condition for stability respect to a perfect state-measurement LQSF

system , it is apparent that statements may alsoA E Cu) > 4 , (6.5) be made about the general LQG regulator if theU

proved in (4, pp. 96-98) and 116) for single-input 
‘C o l t  6 is a special case of a result provedLQSF regu lators , generalizes to multiloop syatewm
by Wang (19), 135) .

4
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effect of the ~almen filter on the system s open-
~ — 2 ’  ~ , K f f i —  ~~N R_ Z B!’lt) ~ioop dynamic. is viewed a. a component of the per- —

turbation N.
— ‘ ~ (~~. !(2 N - I)R 1B

T
K + g ) x > . (A.6)

Appendix A

Using (A .4) and the fact that ~ - 
_
~~

1
!
T
~ ~~

. weProofs of Theornpm I and 2
have

We begin by introducing the following nota-
tion to facilitate the proof.: !c~.!o — ‘ !. ~‘ ~~~~~~~ 

— B <~~~, ~~ ‘

Ci) The inner-product space 
~~~~~ ~~ is de fined 

> ~~~~~~ • (2 N — (1,8)x)K~~B
tK ~~~

>by

1.2
11
(0, •) — (!Jx: (0, •)‘R~, • C!~X 

~~ 
(2 N - (l+B)!)JI lET

! ~~ >

J x~ 1t) x (t)d t ( “} (A.la) ) 0.
0

Rearranging and taking the limit i .., (A.5)
(t)dt (A.lb) follows. Now, sa~tpose for the purpose of arot nt

~~~ . 
z> — C’~’~w 

that x is not squere-integrable . Since (~l/2, ~
1/2.. 1/2—(ii) The extens ion L25

n
(O , ) of 1.2

n
10, ~) is ii detectable , this means CQ x~, ~ in—

defined by creases without bound as t increases, contradict-
ing (A.5). Therefore , ~ is square-integrable. By

_ (~~~~(Q, *)•R
’1, hypothesis N and hence A -  IN ~~

1B1
~K have finite

L 5T 
gain. Thus, ~ — (A - B N K 9TK)~~ is also

— 
(t )x (t )dt <~~ for all TI (A.2a) .quare—integrable. Sinc, bath l and ~ are square-

intagrable, it follows (cf. (32 , pp. 235—2371)

<K,~~> if the integral (A. lb) that x is asymptotically stable.0
<m y> — converges Proof of Theorem 1: Equation (5.2) ensurese ~ 

— othe~~ise 
that (A.4) is satisfi.~~ Since, for memoryless
N, i is the state of (~~) and since the initial(A.2b) 
~iae t — 0 ii not dist nguiahed, the asymptotic

(iii) The linear tru ncatio n operator stability of is assured if ~ is asymptotically
stable for every initial state i(0) — ~~~. TheoremP :1. ‘~(O, ) • L2~ (O, •) is defined by 1 follows from (4.4) and theorem A.l.cl-T 2.

x(t) if t C (0, ii Proof of Theorem 2, From (5.4) and Parsaval s
(P ii) (t) — ,

~ 
(A.3) theorem it follow, that, for eve ry u £ 1.

2
(0 . )

( 0  otherwise 
N — I ) R

1u> — <u, (2 1. —For brevity of notation we denot. ~~~ by ~~~ . 
<~~, (2 

— — — —
Th. key result in th . proofs of theorems 1 

~ 
~~~~~~~~ ( L (j w ) R  1 + L*( jw) —and 2 i~ the following: - — r

Theorem A .1; If the p.rturbaticn N of
is .uch that for some B > 0 — 

— K 
1)U(jU)dw > 0 (A.8)

‘ u, (2W — (1 + 8 L)~~~ ’ > 0 (A.4) —

where U(~w) is the Fourier transform of u. Thus
for all ~~C 1.m 10 ) ,  then (ii (A.4) r. satisfied with B — 0. Since f~~’2, zi

is detectable, theorem A .l implies that I is
‘ ‘ j , ~ ‘ + B ‘~~, A > (A.5) asymptotically stable , regardless of the value of

It follows that the weighting pattern 11(t)
Where , are the solution of CE) ’ and (ii) if, (i.e., the response of (

~) to an impulse ~~6(t)
additionally, (~l/2 ~ is detectable , then ~ is where 6(t) is the Dirac delta function) is asymp—
aaysçoticaliy stabl , and .quüe-int.grable.o totically stable.

From standard results on linear systemsProof: 35 K the solution of (4.3) and ~ the we have
solution of C ith ~(0) — ~~~, we have that for 

Ci) il(s) — (Is • A — B 1~(,)1~l1TJ~)—l (A.9)every TC(0 ,
where W(s) is the Laplace transform of W(t),

4 .T 51t. j
t ( t )  

~~1t 
—
,, 

j~~(~~ 
(t)~~j (t))dt (ii) 11(t) — ~~(t)e (A.lO)

— iT(t) E i(T~~ 2<5~ i~’ ~~~. - 
~ !!!)!~

> where C Ct) are non-zero matrices gf polynomials
in t a~~ C(W) is the set of charactaristic fre-
quencies of 11(t)., and

S
- . - -- - - -~~-- - -. - - - - - - . .  - .—- - - -n -



(iii) P1W) - 1(W) C C(W) C P(W) (A.lla) reader is r,ferre4 for additiona l details and
where furthe r explanat ion of the notation and tersitno-

logy . The ideas of (29) are further developed in
— 0) (A.llh) (32), (34). The strate gy used in thu proof in-l (s ildet( !(s i 

wolves showing that the stability conditions of
P( W) (a I (4e t t W ( s ) 3 ) ~~ — 0) (A. 11c) theore ms 1 and 2 follow as ismiediats coroll aries

to a result (Theor em 3 .1) concerning the tnput/
(We call 1(W) and P(W) respectively the zeroes and output stability of a class of syste ms including
the po les of W ( s ) . )  Since W (t)  is squarm— (~~) as a special case.
tnteqrebl.. We consider the system

Re(s1) < 0 for all £ C(~ ). (A .12) ax — Fm • Gu + (B.la)

Th. dynamics of (~~) are described (not nec- ~ ~~~~~~~~~~~~~~~~~ 
(B.lb)

.saariiy minimally) by the differential equations where

[ I s _ A  -B 

]1
~ 1 s l ~~~~,

[

~~Cs~~~
lDTK [_ J 2. CA.l3) 

~~CL
’t(R) is an exogenous disturbance input,

F:L 11(R) • 1. n(R) , G:L 11(R) .1. 11(R )
2. 2. 2. 2.

where s — L, 1, Is) and ~0
(s) are polynomial are non—anticipative operatorsdt. —ii

matrices satisfying L(s) — ~~~~~~~~~ and th. 
with finite gain , and

roots of det 1~~ (s) ) are the poles of L(s). For FO — o, Go — 0.
(Z) to be asymptotically stable, we require that Introducing the duirey variable w, the arbitrary
th. root, of the characteristic polynomial p(s) constant c, and rearranging, the dynamics of the
associated with (A.13) all have negative real system (B.l) may be described equivalently by
parts Using a well-known matrix identity, we 

~~
.. 

~~~~~~~~~~~~~~ 4~— )~ i~w (B.2a)hav, from (A.9) and (A.l3) x —

11 s - A  -B 1 — — —
w — -(IUA - F + - G (-R~~B

T
IC +

- p(s) det l 
—

~~~~~~~~ + 4 (1-c)a3x+K~~
.

— det(~~1(s))•det( Is — A +  B s ) 1 K1 Th. following result may now be stated:

Theorem D l :  Let the operator
d.t(~~~s)J

— det(W (s)3 (A. 14) - F + (4 B - G) (_p~
lBTK)) + 4 ~(3.3)and there fore

d.t(~~ (s) ) be strongly positive. Then, the relation between
det L!f~(s ))  — (A.L5) the disturbance input ~~and the system output x

p(s) defined by (3.2) has finite gain.

From (A. l I )  an 1 (A .lS) it follows that , except for Proof: We apply the positivity theorem of
these roots o( i( 5

~ 
which cancel with the roots of leans (29, Theorem 33. Frosi the Riccati equation

the polynomial deti L (a)), all roots of the charac— (4.3) and Parsevs l s theorem, we conclude that the
teri~ tic pn1y,.n,nis1~~,(s) are contained in C(W) . operator in brackets in (B.2a) is positive for
Since I. has fi n i te jaija, it follows that all the every £ > 0. The assumption that F and G have
roots of det (~~(s) I have negative real parts. Thus finite gain assures that the operator in brackets
any canc~ellatu ,na in (A.lt) can involve only roots in (B.2b) has finite gain. In view of condition
with negative real parts. From (A.12) we conclude (3.3) , we conclude that for £ >0 sufficiently
that all the roots of the characteristic pol~~omial spell , the operator in (B.2b) is also strongly
p(s)  have negative real parts end, hence , ~~,) is positive. The result follows from lames posi—
asymptotically sta ble .0 t ivity th.orem. C)

To apply theorem 3.1 to the special case ofAppendix 5 (~~), we take F A, a n d G . ! N .  Since~~~>0,a sufficient condition for (B.3) to hold isInput-Output Stability~of LQSF Regulators
In this appendix, it is shown that if we (~ - 4 (B.4)

restrjc our attention to the case in which the
state weightin g matrix ~ is positive definite , itI. possib le to render a ve ry compact proo f that e Actua lly , lames statement of the positivity
the conthi tons of theorems 1 and 2 er~ suff icient theore. me rely claims boundedness rather than
to ens urc the input/~~tput stability of the per- fin ite gain. A careful review of lames proof
turbed 1Q61 sy stem (h) . reveals that the stronger claim of finite gain

The pr nf which elbows i. based on the is justified in the present situation Ccf.
1oeittvitv tist otem of lames 1291, to whi ch the (34 , P. 1093).
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Multi—loop linear—quadratic stage—feedback (LQSF) regulators are shown to beS robust against a variety of large dynamical , time—varying, and nonlinear
variations in open—loop dynamics. The results are interpreted in terms of the
classical, concepts of gain and phase marg in , thus strengthening the link between
classical, and modern feedback theory.
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